Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

نویسندگان

  • Tomoyuki Yokota
  • Yusuke Inoue
  • Yuki Terakawa
  • Jonathan Reeder
  • Martin Kaltenbrunner
  • Taylor Ware
  • Kejia Yang
  • Kunihiko Mabuchi
  • Tomohiro Murakawa
  • Masaki Sekino
  • Walter Voit
  • Tsuyoshi Sekitani
  • Takao Someya
چکیده

We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Expansion Measurements in Fresh and Saline Ice Using Fiber Optic Strain Gauges and Multipoint Temperature Sensors Based on Bragg Gratings

This paper describes the use of Fiber Bragg Grating (FBG) sensors to investigate the thermomechanical properties of saline ice. FBG sensors allowed laboratory measurements of thermal expansion of ice samples with a range of different sizes and geometries. The high sampling frequency, accuracy, and resolution of the FBG sensors provide good quality data across a temperature range from 0C to −20C...

متن کامل

Development of Metal-Ceramic Coaxial Cable Fabry-Pérot Interferometric Sensors for High Temperature Monitoring

Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been...

متن کامل

A Multipoint Correction Method for Environmental Temperature Changes in Airborne Double-Antenna Microwave Radiometers

This manuscript describes a new type Ka-band airborne double-antenna microwave radiometer (ADAMR) designed for detecting atmospheric supercooled water content (SCWC). The source of the measurement error is investigated by analyzing the model of the system gain factor and the principle of the auto-gain compensative technique utilized in the radiometer. Then, a multipoint temperature correction m...

متن کامل

Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors.

This contribution presents distributed and multipoint fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multipoint measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and poly methyl methacrylate (PMMA)) demonstrating cryogenic operation in the rang...

متن کامل

Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 47  شماره 

صفحات  -

تاریخ انتشار 2015